发布时间:2014-09-02所属分类:科技论文浏览:1285次
摘 要: 摘要:随着科技发展的日新月异,自由激光空间光通信已经成为现代通信技术发展的新热点。但从技术实现方面来讲,由于激光通信具有信号光束窄、发散角小这样的特点,从而导致APT(Acquisition Pointing Tracking)捕获、跟踪、瞄准相距较远的运动体上的较窄信号
摘要:随着科技发展的日新月异,自由激光空间光通信已经成为现代通信技术发展的新热点。但从技术实现方面来讲,由于激光通信具有信号光束窄、发散角小这样的特点,从而导致APT(Acquisition Pointing Tracking)捕获、跟踪、瞄准相距较远的运动体上的较窄信号光束相当困难。
1、分数阶Fourier变换技术在有线通信系统中的应用
有线通信是利用电线或者光缆作为通讯传导的通信形式,它通过对现有各类网络进行技术改造,与下一代新建网络互通和融合,成为现代通信系统的重要支柱。然而,在有线通信信道中存在各种噪声,如果不对其进行处理则会使误码率增加。因此,要消除不理想信道和噪声对信号的影响,必须应用新技术。分数阶Fourier变换(FRFT)的通信技术原理是以线性调频信号(chirp)作为调制信号,利用线性调频信号在分数阶里变换域的能量聚焦特性,通过接收机进行路径分集接收抑制有线通信信道多途效应所产生的码间干扰,从而提高系统的抗噪声干扰和频率选择性衰减的能力。具体应用程序如下:
1.1信号检测与参数估计
分数阶Fourier变换作为一种新型的线性时频工具,其实质是信号在时间轴上逆时针旋转任意角度到U轴上的表示(U轴被称为分数阶Fourier(FRF)域),而该核是U域上的一组正交的chirp基,这就是分数阶Fourier变换的chirp基分解特性。所以,在适当的分数阶Fourier域中,一个chirp信号将表现一个冲击函数,即分数阶Fourier变换过程中,某个分数阶Fourier域对应的chirp信号具有很好的能量聚焦性,而这种能量聚焦性对chirp信号的监测和估计具有很好的作用。因此,在信号检测与参数估计中,我们的基本思路是以旋转角口为变量进行扫描,求出观测信号所有阶次的分数阶Fourier变换,于是形成信号能量在由分数阶域U和分数阶次P组成的二维参数平面上的分布。然后,我们按域值在在此平面上进行二维搜索,找出最大峰值位置。并根据最大峰值坐标可以检测出chirp信号,并估计出峰值所对应的分数阶次P和分数阶域坐标,估计出信号的参数。
1.2分集接收
分集接收是利用信号和信道的性质,将接收到的多径信号分离成互不相关的多路信号,然后将多径衰落信道分散的能量更有效的接收起来,处理之后进行判决,从而达到抗衰落的目的。本文采用分集合并技术,即取出那些幅度明显大于噪声背景的多径分量,对它们进行延时相加,使之在某一时刻对齐并按一定的准则合并,提高多径分集的效果。在通信系统中,RAKE接收机由N个并行相关器和个合并器组成,每个相关器与发射信号的一个多径分量匹配。在N个相关器前增加时移单元,就可在时间上将所有分量对齐,从而采用相同的本地参考信号。然后,相关器组的输出送给合并器,将合并器输出的判决变量送到检测器进行判决。最后,根据接收机使用的不同合并方法,在选择性合并方式下,在多支路接收信号中,选取信噪比最高的的支路信号作为输出信号。
1.3峰值输出
信噪比系数呈现出一个典型的振荡特性,且振荡频率与振荡幅度与时频面的旋转角度和输入信号相关。因此在采用分数阶Fourier变换技术的实际使用中,在进行近似计算处理时需要特别注意,必须对近似处理带来的误差进行评估。
2、ATP系统在光通信系统中的应用
ATP系统是由粗跟踪和精跟踪单元构成的复合跟踪系统,其主要功能是在粗跟踪单元实现初始的捕获和跟踪,并将信标光引入精跟踪的视场范围内,然后精跟踪单元实现更高带宽的跟瞄,再将信标光稳定在可通信的视场之内,为最终空间站光通信系统工程实现奠定了一定的技术基础。
2.1粗跟踪单元
粗瞄准单元由一个安装在精密光机组件上的收发天线,万向支架驱动电机以及粗跟踪探测器(CCD)组成,主要作用是捕获目标和完成对目标的粗跟踪。在捕获阶段,粗瞄准机构接收由上位机根据已知的卫星运动轨迹或星历表给出的命令信号,将望远镜定位到对方通信终端的方向上。为确保入射的信标光在精跟瞄控制系统的动态范围内,必须根据粗跟踪探测器给出的目标脱靶量来控制万向支架上的望远镜,使它的跟踪精度必须保证系统的光轴处于精跟踪探测器视场内,从而把信标光引入精跟踪探测器的视场内。
2.2精跟踪单元
精跟踪单元的跟踪精度将决定整个系统的跟踪精度,它要求带宽非常高,带宽越高,对干扰的抑制能力就越强,从而可加快系统的反应速度,加强跟踪精度。因此,设计一个高带宽高精度的精跟踪环是整个ATP系统的关键所在。在这一单元我们可采用高帧频、高灵敏度、具有跳跃式读出模式的面阵电荷耦合器件(CCD)传感器。它基于深埋沟道移位寄存器技术,可以获得非常高的读出速率、非常低的噪声和非常高的动态范围。通过由捕获探测器(CCD)和定位探测器(OPI N)组成探测接收单元转换,CCD完成捕获与粗跟踪,并将接收光引导至OPI N上,在OPI N中进行误差信号的检测,从而提高信标光捕捉精度。
2.3控制单元
将捕捉的信号经放大、整形和A/D变换处理后,在计算机中按一定的数据分配流程将信号输入。高新技术在通信系统中的应用然后通过计算机给出的速度控制信号和加速度控制信号,又经数据分配接口送入D/A转换与处理网络,使伺服电机按要求转动并带动天线转动机构分别在水平和俯仰两个方位转动,以调整天线的位置,达到自动捕获、跟踪、瞄准的目的。
3、结语
通信技术的发展促进了社会生活的进步,在未来通信技术的研究上,应不断探索、创新,追求高新技术在通信系统中的应用。
濠电姷鏁告慨浼村垂閻熷府鑰块弶鍫涘妽濞呯姵淇婇妶鍌氫壕闁告浜堕弻銊╂偆閸屾稑顏�:闂傚倸鍊风粈渚€宕幐搴㈡珷閹兼番鍨洪崣蹇涙煟閵忊懚褰掑礄閻樼粯鐓曢柟浼存涧閺嬬喖鏌涚€n偆澧柕鍥у瀵噣宕堕‖顔芥崌濮婂宕熼銇把囨煛鐏炶鈧牜缂撻懞銉ョ窞濠㈣泛鏈弲濂告⒒娴h櫣甯涢柟纰卞亞濡叉劙寮撮悩鎰佹綗闂佸搫鍟悧鍡欑不閿濆棛绠鹃柛鈩冾殙鐎氭澘霉濠婂嫬鍔ら棁澶愭煥濠靛棙鎼愰柛鏂款儐娣囧﹪顢涘鎹愬惈闂佸搫鐭夌换婵嗙暦椤忓懏濯撮柛娑橈功娴滄牠姊绘笟鈧埀顒傚仜閼活垶宕㈤崨濠佺箚闁绘劖娼欑粭褏绱掗瑙勬珕闁靛牞缍佸畷姗€濡搁敂缁橆棨闂傚倷绶氬ḿ鑽も偓闈涚焸瀹曘垺銈i崘銊ь啇闂佺ǹ绻樺Λ璺ㄦ崲閸℃ǜ浜滈柟閭﹀枛閺嬪骸霉濠婂啫鈷旂紒杈ㄦ尰閹峰懏顦版惔妯绘櫃闂備焦鎮堕崝宥咁渻閽樺鍤曢柟鎯板Г閸嬪嫰鏌i幘铏崳妞ゆ柨顦—鍐Χ閸℃﹩姊块梺绋款儐閸旀洟锝炲┑瀣╅柍鍝勫€婚崣鍡椻攽閻愭潙鐏﹀畝锝呮健閹偤鏌ㄧ€c劋绨婚梺鍝勬处椤ㄥ棗鈻嶆繝鍕ㄥ亾濞堝灝鏋ゅ褎顨婇獮鍡涘籍閸繍娼婇梺鏂ユ櫅閸燁偊顢旀导瀛樷拻濞达絽鎲¢幆鍫ユ煕婵犲媱鍦弲闂侀潧臎閸屾粌澧鹃梻浣虹帛閸旀洖螣婵犲洤鐤柛娑樼摠閻撶姷鐥弶鍨埞濠⒀傚嵆閺岋綁濡烽妷锕€娈楅梺鍝勬湰缁嬫垿鍩㈡惔銊ョ疀妞ゆ帒鍊风槐姗€姊绘笟鈧ḿ褍螞濡ゅ懎鐤ù鍏兼綑缁犵喖鎮楀☉娅虫垶鍒婄€靛摜纾奸悗锝庡幗绾泛霉濠婂嫮澧垫慨濠冩そ楠炴劖鎯旈敐鍌涱潔闂備礁鎼悧婊堝礈濮樻墎鍋撻棃娑栧仮鐎规洘锕㈤、娆撴嚃閳哄啫鐐婂┑鐘垫暩婵澧濋梺绋款儐閹稿墽妲愰幘鎰佸悑闁糕剝锕╁Λ鍐⒑绾懏鐝柟鐟版喘瀵偊骞樼紒妯绘闂佽法鍣﹂幏锟�.闂傚倸鍊风粈渚€宕崸妤佸€堕柛顐犲劚閻掑灚銇勯幒宥囶槮濠⒀屽灡缁绘稓浠﹂崒姘e亾濠靛钃熼柨娑樺閸嬫捇鏁愭惔鈥茬敖闂佹椿鍘奸澶愬蓟濞戞埃鍋撻敐搴濈敖閺佸牓鎮楀▓鍨灆闁告濞婇妴浣糕槈濡攱鐎婚梺鐟邦嚟婵參寮稿▎鎾粹拻濞达絿枪閹垶绻濋姀鈽呰€挎鐐诧工椤撳ジ宕堕埡鍐殽闂備礁鎼粔鏌ュ礉鎼淬劌鐓濋柡鍐ㄥ€甸崑鎾荤嵁閸喖濮庡┑鈽嗗亝椤ㄥ﹤鐣烽姀銈呯婵°倓鑳堕崢鎼佹⒑閸撴彃浜介柛瀣閺呭爼顢氶埀顒€顫忛搹瑙勫枂闁挎繂妫欓悵姘舵倵鐟欏嫭绌跨紓宥勭椤曪綁宕滄担鐟扮/闂侀潧饪垫俊鍥╃矓閸撗呯=闁稿本鐟ㄩ澶愭煕鐎n偅宕岄柡宀嬬秮楠炲鎮欓崱妯虹伌闁诡喗顨婇、姘跺焵椤掑嫬钃熼柨婵嗘媼濞尖晠鏌i幘鍐差劉闁诲繐妫欑换娑㈡晲閸涱喗鎮欓梺鎸庢处娴滎亪鎮伴鐣岀懝闁逞屽墴瀵偊骞樼紒妯绘闂佽法鍣﹂幏锟�,闂傚倸鍊风粈渚€骞夐敓鐘冲仭妞ゆ牜鍋涢崹鍌炴煕椤垵浜炴い鈺冨厴閺屾盯顢曢悩鑼患闁诲骸鐏氶悡锟犲蓟閵娾晜鍋嗛柛灞剧☉椤忥拷闂傚倷娴囬褏鈧稈鏅犲畷妯荤節濮橆厸鎸冮梺鍛婃处閸嬫捇鎳撻崸妤佺叄闊浄绲芥禍鏍瑰⿰鍕煀閾绘牠鏌ㄥ┑鍡樺櫣闁哄棛鍋ら弻銊モ槈閾忣偄顏�濠电姷鏁搁崑娑㈡偤閵娧冨灊鐎光偓閸曨剙浜遍梺鍛婁緱閸犳岸銆呴弻銉︾厵闁绘垶锕╁▓鏃傜磼閳ь剟宕卞☉娆戝幗濠碘槅鍨甸崑鎰暜濞戙垺鐓熸繝鍨尰鐎氾拷.
SCISSCIAHCI