发布时间:2020-05-09所属分类:农业论文浏览:1次
摘 要: 摘要本文利用12个CMIP5气候模式的风场资料,采用全球大气环流三型分解模型中的经圈型环流流函数,研究了地表以下虚假的风场资料对北半球夏季Hadley环流空间模态及下沉支位置未来预估的影响。结果表明:在计算Hadley环流的流函数时,由于垂直积分过程会将地表
摘要本文利用12个CMIP5气候模式的风场资料,采用全球大气环流三型分解模型中的经圈型环流流函数,研究了地表以下虚假的风场资料对北半球夏季Hadley环流空间模态及下沉支位置未来预估的影响。结果表明:在计算Hadley环流的流函数时,由于垂直积分过程会将地表以下虚假的风场资料所带来的误差传递至整层的流函数,从而导致北半球夏季Hadley环流的空间模态中存在虚假的“小环流”,该“小环流”会导致Hadley环流下沉支位置的误判,并对下沉支位置变化趋势的准确计算产生较大影响;进一步的定量分析发现,在未来排放情境下(RCP8.5),地表以下虚假的风场资料所引起的误差会导致北半球夏季Hadley环流下沉支向极扩张趋势的高估。
关键词Hadley环流,经圈型环流流函数,虚假风场资料,空间模态,下沉支位置
1.引言
Hadley环流是全球大气环流中强度最强、尺度最大的垂直环流,它在南北半球各有一个闭合的环流圈,其公共上升支与赤道辐合带对应,下沉支与南北半球的副热带高压带相对应,引起南北半球的质量交换以及低纬度地区和中高纬地区的角动量、热量和水汽交换[1][2],在全球的天气、气候变化过程中起着十分重要的作用。
利用再分析资料的研究表明,近几十年来,北半球冬季Hadley环流显著增强[3][4][5][6],下沉支位置显著地向极扩张[7][8][9][10][11],这导致赤道地区的上升运动和副热带地区的下沉运动的加强[12],使得赤道地区云量和上层水汽增加,副热带地区的云量和降水减少,干旱加剧。同时,Hadley环流下沉支位置的移动会导致全球降水和气温的时空分布发生变化,对全球自然生态、农业以及水资源等产生重要的影响[8][13]。
此外,利用CMIP5气候模式资料对Hadley环流气候变化问题的研究表明,CMIP5模式虽能得到Hadley环流下沉支向极地扩张的结论,但是扩张的程度比再分析资料和观测资料得到的结果小将近一个量级[14][15][16][17]。例如,Huetal.(2013)利用CMIP5模式模拟结果发现,在全球变暖背景下,Hadley环流在1979至2005年期间向两极扩张了大约0.15˚,仅仅是再分析资料结果的六分之一[16]。因此,关于再分析资料和模式模拟的Hadley环流向极扩张的程度是否存在显著差异仍需进一步的研究。
Mathewetal.(2016)利用4套再分析资料,通过研究1979至2012年Hadley环流的质量流函数演变特征发现,北半球夏季Hadley环流中存在一个反向的“小环流”,该“小环流”会引起Hadley环流下沉支位置的误判[18]。然而,Chengetal.(2018)利用5套再分析资料的研究指出,北半球夏季Hadley环流空间模态中的“小环流”结构是由于计算Hadley环流的流函数时,未考虑地表以下虚假的风场资料的影响而错误引入的[19]。也就是说,再分析资料中,地面气压小于1000hPa范围内的虚假风场资料会对北半球夏季Hadley环流空间模态的计算造成显著的影响,从而导致Hadley环流下沉支位置的计算存在较大的误差。
上述关于Hadley环流的空间模态及下沉支位置在计算过程中存在误差的研究工作均是基于再分析资料开展的,关于模式模拟的研究未见报道。本文利用CMIP5气候模式,通过分析模式模拟的Hadley环流的空间模态、强度及下沉支位置的变化趋势受地表以下虚假风场资料的影响情况,研究未来排放情景下Hadley环流下沉支位置的长期预估结果受计算误差的影响程度,为准确利用模式开展Hadley环流的未来气候变化研究提供理论依据。
2.资料与方法介绍
2.1.资料
本文采用了12个CMIP5全球气候模式(见表1)模拟的地面气压数据及月平均水平风场u、v数据,包括CMIP5全强迫历史模拟试验和RCP未来情景RCP8.5模拟试验的结果,其中历史模拟试验的时间段为1979年至2005年,未来情景试验的时间段为2040年至2099年。为了方便应用,所有的模式结果都被插值到2.5˚×2.5˚分辨率的水平网格上,垂直方向上取17层(1000、925、850、700、600、500、400、300、250、200、150、100、70、50、30、20、10hPa)。
3.结果分析
3.1.Hadley环流空间模态计算的差异
根据公式(1)计算Hadley环流的流函数时,若不去除地表以下虚假的vH风场资料,直接输入经圈型环流的南北向速度场vH进行计算,由此得到的1979~2005年12个CMIP5气候模式模拟的北半球夏季7月份Hadley环流空间模态如图1所示。由图1可看出,12个模式中有4个模式(BNU-ESM、FIO-ESM、NorESM1-M、NorESM1-ME)在北半球Hadley环流中出现了反向旋转的“小环流”,其余模式虽然没有明显的“小环流”,但均呈现出双中心的结构特征。
然而,我们观察图2发现,在计算Hadley环流的流函数时,若先去除地表以下虚假的vH风场资料,再代入公式(1)计算,得到的1979~2005年12个CMIP5气候模式模拟的北半球夏季7月份Hadley环流气候态中的“小环流”(如图1中)结构消失,Hadley环流均呈现单中心的结构。对比图1和图2说明,地表以下虚假的vH风场资料对Hadley环流空间模态的计算影响显著。以BCC-CSM1-1模式为例,在订正计算误差前,Hadley环流的流函数值在15˚N~37˚N范围为正值,但在订正计算误差后,流函数值为正值的区域变为15˚N~32˚N,Hadley环流北支宽度和北半球下沉支位置均发生了改变,其他模式的结果也有类似的变化。
以上的结果表明,地表以下虚假的vH风场资料会对Hadley环流空间模态的计算产生误差,特别是由此产生的虚假的“小环流”结构,会对北半球Hadley环流下沉支位置的准确计算产生重要影响。因此,在开展Hadley环流相关的研究时需要考虑地表以下虚假的vH风场资料所引入的计算误差。
3.2.Hadley环流空间模态计算差异的原因
1979~2005年12个CMIP5模式模拟的7月全球纬向平均的北半球经圈型环流vH风场,在去除地表以下虚假风场资料值前后的差异如图3所示。我们发现,vH风场的差异主要集中在对流层低层(700~1000hPa),且以低纬度地区的南风和中纬度地区的北风差异为主要特征,而在700hPa以上的对流层中上层,vH风场的差异十分微弱。然而,观察图4中12个CMIP5模式模拟的1979~2005年7月全球纬向平均的北半球Hadley环流流函数的差异发现,虽然虚假的vH风场资料的差异主要存在于700hPa以下的对流层低层,但根据vH风场计算的Hadley环流流函数的差异却是自地面到高空都存在,显著地表现为30˚N以南的低纬度逆时针异常环流和30˚N以北的中纬度顺时针异常环流特征。这说明经过公式(1)的计算,原来仅存在于低空的vH风场差异通过垂直积分过程影响了整层Hadley环流的空间模态。进一步的计算分析发现,北半球Hadley环流在夏季最弱,而地表以下虚假的vH风场资料所导致的如图4所示的异常环流流函数的量级与误差订正前Hadley环流流函数的量级相当,而在其它季节,vH风场的差异引起的异常环流的量级远小于Hadley环流本身,这就解释了为什么在误差订正前只有在北半球夏季Hadley环流中会出现“小环流”结构。
3.3.Hadley环流强度、下沉支及宽度的差异
据公式(1)计算的Hadley环流的流函数,其负值代表南半球Hadley环流,正值代表北半球Hadley环流。因此,南北半球Hadley环流的强度分别定义为30˚S~30˚N范围内流函数的极小值和极大值[23],且用500hPa高度上流函数0值所在的纬度表示Hadley环流上升支或下沉支位置。记南北半球Hadley环流的上升支与下沉支之间的纬度数为其宽度,记南北半球Hadley环流的宽度之和为总宽度。由图5中误差订正前后的对比分析可知,在CMIP5的历史模拟阶段,地表以下虚假的vH风场对各月份Hadley环流强度的影响都十分微弱。然而,由图6(a)可知,虚假的vH风场使得6~9月份北半球Hadley环流下沉支位置的计算存在较大程度的北移误差。图6(b)说明,6~9月份北半球Hadley环流下沉支位置的计算误差导致北半球环流宽度及南北半球环流总宽度均变得更宽。进一步的定量分析表明,地表以下虚假的vH风场引起的7月份北半球Hadley环流下沉支位置的计算误差达到5.84˚,也使得南北半球环流总宽度的计算误差达到6.88˚。
3.4.Hadley环流未来预估特征的差异
Taoetal.(2015)的研究指出,未来不同排放情景下,Hadley环流的变化趋势在2040~2099年比2006~2039年更显著[24]。因此本节选取2040~2099的时间段来研究北半球Hadley环流的未来预估特征。通过对比图7(a)和图7(b)发现,在RCP8.5情形下,地表以下虚假的vH风场资料对北半球Hadley环流强度的未来变化趋势影响不大。也就是说,无论是误差订正前还是误差订正后,图7(a)和图7(b)中6~9月份北半球Hadley环流的流函数正值中心均位于负的趋势带上,说明模式模拟的未来北半球夏季Hadley环流呈现减弱的趋势。然而,地表以下虚假的vH风场资料对北半球夏季Hadley环流下沉支位置的未来预估结果影响显著。如图7所示,误差订正前,6~9月份的流函数0值线在40˚N左右的正趋势带上,表明未来北半球的Hadley环流将向极扩张,而误差订正后,流函数0值线位于负的趋势带上,表明未来北半球的Hadley环流下沉支位置将向赤道偏移。进一步的定量分析发现,误差订正前,6~9月份北半球夏季Hadley环流下沉支位置的未来变化趋势为0.097˚每十年,而误差订正后的未来变化趋势为-0.067˚每十年,这说明地表以下虚假的vH风场资料会导致CMIP5模式对北半球夏季Hadley环流向极扩张趋势的高估。因此,我们在利用CMIP5模式资料研究Hadley环流的未来演变特征时,需要去除地表以下虚假的vH风场资料,以避免其引起的计算误差。
相关期刊推荐:《气候变化研究进展》中文版创刊于2005年5月,英文版2010年创刊,由中国气象局主管、国家气候中心主办,是中国在气候变化研究领域内由自然科学和社会科学相结合的综合性学术期刊。该刊主要刊登与气候变化相关的跨学科研究进展,介绍国内外有关气候变化的重大活动信息。旨在促进气候变化研究的发展,并推动研究成果在经济社会可持续发展、适应和减缓气候变化对策制定、气候政策与环境外交谈判、资源保护和开发等方面的应用。
4.结论
本文利用12个CMIP5气候模式资料,研究了地表以下虚假的风场资料对北半球夏季Hadley环流的空间模态、强度、下沉支位置及其未来预估计算的影响,得出以下主要结论:
(1)地表以下虚假的风场资料会导致北半球夏季Hadley环流的空间模态中出现虚假的“小环流”结构,从而引起Hadley环流下沉支位置的误判,并对下沉支位置变化趋势的准确计算产生较大影响。
(2)北半球Hadley环流在夏季最弱,位于地表以下的虚假风场资料所引起的整层异常环流的量级与原Hadley环流的量级相当,而其它季节,异常环流的量级远小于Hadley环流本身,这是导致北半球夏季Hadley环流空间模态计算中出现虚假“小环流”结构的主要原因。
(3)在RCP8.5情形下,地表以下虚假的风场资料对Hadley环流强度的未来变化趋势影响不大,但对夏季Hadley环流下沉支位置的未来预估结果影响显著。在未来2040~2099的时间段内,地表以下虚假的风场资料会引起下沉支位置的未来变化趋势存在每十年0.164˚的差异,导致北半球夏季Hadley环流向极扩张趋势的高估。因此,在利用CMIP5模式资料研究北半球Hadley环流的未来演变特征时,需要去除地表以下虚假的风场资料的影响。
SCISSCIAHCI