Machine Learning is an international forum for research on computational approaches to learning. The journal publishes articles reporting substantive results on a wide range of learning methods applied to a variety of learning problems, including but not limited to:
Learning Problems: Classification, regression, recognition, and prediction; Problem solving and planning; Reasoning and inference; Data mining; Web mining; Scientific discovery; Information retrieval; Natural language processing; Design and diagnosis; Vision and speech perception; Robotics and control; Combinatorial optimization; Game playing; Industrial, financial, and scientific applications of all kinds.
Learning Methods: Supervised and unsupervised learning methods (including learning decision and regression trees, rules, connectionist networks, probabilistic networks and other statistical models, inductive logic programming, case-based methods, ensemble methods, clustering, etc.); Reinforcement learning; Evolution-based methods; Explanation-based learning; Analogical learning methods; Automated knowledge acquisition; Learning from instruction; Visualization of patterns in data; Learning in integrated architectures; Multistrategy learning; Multi-agent learning.
《Machine Learning》是一本由SPRINGER出版商出版的专业工程技术期刊,该刊创刊于1986年,刊期Monthly,该刊已被国际权威数据库SCIE、SCI收录。在中科院最新升级版分区表中,该刊分区信息为大类学科:工程技术 3区,小类学科:计算机:人工智能 4区;在JCR(Journal Citation Reports)分区等级为Q2。该刊发文范围涵盖计算机:人工智能等领域,旨在及时、准确、全面地报道国内外计算机:人工智能工作者在该领域取得的最新研究成果、工作进展及学术动态、技术革新等,促进学术交流,鼓励学术创新。2021年影响因子为5.414,平均审稿速度较慢,6-12周。
大类学科 | 分区 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
计算机科学 | 3区 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 计算机:人工智能 | 3区 | 否 | 否 |
JCR分区等级 | JCR所属学科 | 分区 | 影响因子 |
Q2 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | Q2 | 5.414 |
影响因子 | h-index | Gold OA文章占比 | 研究类文章占比 | OA开放访问 | 平均审稿速度 |
5.414 | 135 | 37.50% | 99.37% | 未开放 | 较慢,6-12周 |