发布时间:2022-04-19所属分类:计算机职称论文浏览:1次
摘 要: 摘 要:针对现有加密图像可逆信息隐藏(RDHEI)方法存在的隐藏容量低、解密标记图像质量差的问题,提出了一种新的基于高阶位平面冗余的RDHEI方法。首先,通过Logistic映射对原始图像进行分块加密,并保留块内像素高阶位平面的冗余;其次,依据块内高阶位和低阶位个数是否
摘 要:针对现有加密图像可逆信息隐藏(RDHEI)方法存在的隐藏容量低、解密标记图像质量差的问题,提出了一种新的基于高阶位平面冗余的RDHEI方法。首先,通过Logistic映射对原始图像进行分块加密,并保留块内像素高阶位平面的冗余;其次,依据块内高阶位和低阶位个数是否相同的规则将加密后的图像块分为可嵌入块和不可嵌入块,并在可嵌入块中使用像素低阶位的值替换对应的高阶位值,从而实现高阶位平面冗余向低阶位平面的转移;最后,利用块内低阶位平面中腾出的嵌入空间来嵌入机密信息。在这之后,接收者利用密钥实现数据提取、图像解密和图像无损恢复的操作。在使用USC-SIPI标准图像库中的6幅图像进行的仿真实验中,在高阶位平面数等于3时,所提方法的图像的平均嵌入率为 1. 73 bpp,直接解密后的标记图像的平均峰值信噪比(PSNR)为 47. 20 dB。实验结果表明,该方法不仅提高了加密图像的信息嵌入量,而且提高了直接解密后的标记图像的PSNR值。
关键词:加密图像;可逆信息隐藏;图像恢复;嵌入量;密钥;高阶位平面;冗余
0 引言
可逆信息隐藏(Reversible Data Hiding,RDH)是在载体图像中可逆地隐藏附加数据,并能无差错地提取附加数据和无损恢复原始图像[1-2]。传统的RDH主要有3种方法:基于无损压缩的可逆信息隐藏算法[3-4]、基于直方图平移的可逆信息隐藏算法[5]和基于预测误差扩展的可逆信息隐藏算法[6-7]。随着网络的快速发展以及人们隐私意识的增强,加密图像的可逆信息隐藏(RDH in Encrypted Image,RDHEI)成为研究的热点。RDHEI可以在不知道原始内容的情况下嵌入数据,实现了隐私、版权保护,可广泛用于军事、医疗等领域。例如:医学图像常被用作诊断依据,在医生和医生、医生和患者之间通过互联网进行传输和存储,通常此类图像中包含大量的个人隐私信息及有关医生的诊断说明信息。因此保护医学图像的信息安全极其重要。利用加密图像信息隐藏算法,通过对图像及嵌入信息的处理,一方面可以满足大量信息的嵌入,另一方面保证图像及嵌入信息在传输中不被识别和泄露。在接收端则可根据不同应用需要获取图像信息(如医学影像本身)及嵌入信息(患者的个人信息及诊断信息)。
根据加密前是否需要对图像进行预处理,现有的RDHEI 算 法 可 分 为 加 密 前 预 留 空 间(Reserving Room Before Encryption,RRBE)和加密后腾出空间(Vacating Room After Encryption,VRAE)两类。Zhang[8]提出基于 VRAE 的位翻转 RDHEI算法。该算法按位异或加密原始图像,翻转加密图像块一半像素的三个最低有效位(Least Significant Bit,LSB)实现 1 bit数据的嵌入,算法的嵌入量较低。王子驰等[9]提出根据信息隐藏密钥在每个加密图像块中随机地选取多个集合,修改每个集合嵌入比特数据以提高信息的嵌入容量。Li等[10]提出以单个像素为单位进行比特位的翻转嵌入信息,同时采取随机扩散策略在多个像素中隐藏相同的信息,该算法有效地提高了信息的嵌入量。Qin等[11]提出将加密的图像块分为平滑块和复杂块,通过压缩平滑块的最低有效位(LSB)获得信息嵌入空间。李志佳等[12]提出使用同态加密算法加密原始图像,对加密的图像分块,建立分块差值直方图,选取峰值点嵌入机密信息。该算法实现了密文域可逆信息隐藏,同时提高了信息的嵌入容量,但是同态加密计算增加了算法的复杂度。VRAE类算法总体上是将数据嵌入到加密像素指定的后几位比特位中,能够获得较好的解密图像质量,但信息的嵌入量有待提高。RRBE类算法则是在加密前预留嵌入空间进行机密信息嵌入。Ma等[13]提出在图像加密前使用传统的 RDH 方法预留嵌入空间,图像加密后进行信息嵌入,其算法的最大嵌入率(Maximum Embedding Rate,MER)仅为0. 5 bpp。Chen 等[14]提出利用重排方式将较高阶位平面的相关比特位聚类,生成相应的重排比特流,利用扩展游程编码压缩比特流腾出嵌入空间,以位替换方式进行信息嵌入;但是扩展游程编码并不能提供令人满意的压缩率。Yi 等[15]提出根据图像块位平面 0或 1比特位的分布,将图像块划分为好块或坏块,压缩好块的位平面生成嵌入空间。该算法虽然在一定程度上能够提高信息的嵌入量,但是嵌入量的大小容易受到图像位平面 0 或1比特位分布的影响,而且为了图像的可逆恢复,存储了过多的附属信息,使得直接解密后图像的峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)值较低。Li等[16]提出在图像加密前利用像素的预测误差扩展预留嵌入空间,修改加密后图像的预测差值直方图进行信息嵌入。该算法由于直方图峰值间的差值没有被加密,因此存在一定安全隐患,另外由于峰值点及其附近像素的大量改动使得直接解密后图像的 PSNR 较低。此外,RRBE类算法的实现需要图像所有者预处理图像,对图像所有者有较高的要求。
综上,目前常用的RDHEI算法嵌入容量不高的主要原因是:加密后图像像素没有足够的冗余空间,并且由于图像可逆恢复的要求引入了过多的附属参数以及对图像进行过多的修改,使得解密后的图像PSNR值降低。基于此,本文提出一个新的 RDHEI 方法。首先,对图像分块,并以块为单位加密原始图像,保留块中大部分像素高阶比特位的相关性;然后,利用同块内像素的高阶位平面冗余,将对应的低阶位平面数据嵌入其中,在低阶位平面中腾出大量的可嵌空间。实验结果表明该方法可以获得较大的信息嵌入空间,提高了信息的嵌入率,直接解密的标记图像也有很好的视觉质量。
1 本文方法框架结构
本文方法包括三个主要阶段,即图像加密、机密信息嵌入,以及信息提取和图像恢复,图 1 给出了该方法的框架。首先,原始图像 I 被分成不重叠的块,通过加密密钥 Key1 产生 Logistic 映射的混沌序列对图像子块内的像素进行异或加密;然后,使用加密密钥 Key2 完成对图像块的位置置乱生成加密图像,保留了图像分块中像素的高阶比特位的相关性,使得图像块的高阶位平面中存在较大的冗余空间。在机密信息嵌入过程中,加密的图像块依据规则划分成可嵌入块、不可嵌入块和辅助块三种。在可嵌入块中,将高阶位平面的冗余转移到低阶位平面中,在低阶位平面中生成可嵌空间,嵌入加密的机密信息,生成标记的加密图像,同时将必要的附属参数存入辅助块中。接收方接收到标记的加密图像,通过辅助块的信息,仅使用数据隐藏密钥 Kh可提取嵌入的机密数据;仅使用加密密钥可以直接得到在视觉上类似于 I 的解密图像;同时使用加密密钥和隐藏密钥时,可以成功提取嵌入的信息,并无损恢复原始图像。
2 图像加密
Logistic 映射是 1976 年数学生态学家梅(R. May)提出的具有重要意义的非线性迭代方程,是用于研究混沌系统经典模型,常用于信息安全领域的研究[17]。
3 数据嵌入
在加密图像块中,保留了像素的相关性,块内的高阶位平面中含有较多的冗余空间,利用这些冗余空间嵌入机密信息。
3. 1 图像分块
数据隐藏方接收到加密图像 Ie之后,首先将该图像划分成不重叠的加密图像块 C(i 1 ≤ i ≤ K),大小为 s × s(与加密时的块大小保持一致)。根据 3. 2 节中的算法,图像像素的冗余被保存在 Ie中类型为 Ca的可嵌入块中,因此可以在这些块中进行信息嵌入。
3. 2 高阶位平面冗余空间转移
图像分块后,冗余部分会出现在部分块的高阶位平面。为了判别图像块是否可嵌,首先将每个图像块内的像素表示为 Xi,(j i表示该像素属于图像块 Ci ,j表示该像素为图像块中的第 j个像素);接着将像素 Xi,j 分成高阶位部分、中阶位部分和低阶位三部分
4 信息抽取和图像恢复
在加密图像信息隐藏算法中,通常密钥只有几十比特,数据量很小,因此通信双方可以事先协商利用特定安全通道进行传输。根据图像的不同处理要求,在特定通道中传输指 定的密钥,使得接收方拥有不同的密钥类型和对应的权限。当接收方既拥有数据隐藏密钥又拥有加密密钥时,可以提取出机密数据,并无损恢复原始图像;仅拥有数据隐藏密钥时,接收方则只能提取出嵌入的机密数据;仅拥有加密密钥时,接收方则可以获得轻微失真的原始图像。
4. 1 只有隐藏密钥Kh,获取机密数据
接收方接收到加密的标记图像 Iew后,按以下步骤获取机密信息:
1)获取标记图像 Iew最后四个像素的 23 位信息,计算图像分块大小 s、位平面高阶位个数 α,以及位图中可嵌入块的个数 e0。
2)根据分块大小 s 对标记图像 Iew分块,然后进行光栅扫描,根据可嵌入块的个数 e0 和式(13)、(14),从前 Llco个块的第一个像素的 LSB 中获取可嵌入块的位置信息,恢复位图 MP,标出图像中 Ca、Cb和 Cf 块。
3)依次连接所有可嵌入块的低阶位平面,从中依次分解出 23 位的 st流,Llco位的 sq 流,剩余部分则为嵌入的加密机密数据。
相关文献您还可以参考:研究信息隐藏相关领域的论文文献
4)对获取的加密的机密数据用隐藏密钥 Kh解密得到原始的机密信息。
4. 2 只有加密密钥,解密获得近似的原始图像
接收方接收到加密的标记图像 Iew。
1)获取标记图像 Iew最后四个像素的位信息,计算图像分块大小 s、位平面高阶位个数 α,以及位图中可嵌入块的个数 e0。
2)根据 4. 1 节中的方法,恢复位图 MP,并标出图像中 Ca 和 Cb及 Cf块,并从所有可嵌入块的低阶位平面中分解出 st 流、sq流。
3)用 st 流替换 Cf块中的最后 4 个像素的比特位,用 sq 流替换前 Llco个块的第一个像素的 LSB位。
4)用所有 Ca块第一个像素的高阶位替换同块内其余像素的高阶位,恢复 Ca块内像素的高阶位平面。
5)根据加密密钥 Key2 恢复图像块的原始位置,根据 Logistic 映射的加密密钥 Key1 生成原图加密时的混沌序列,经过式(2)映射后,对块内像素解密,可得带有嵌入信息的解密图像。由于嵌入方只在 Ca块高阶位平面冗余转移的低阶位平面中嵌入数据,高阶位平面得以完全恢复,Cb块不作嵌入数据,Cf块可以完全恢复,因此解密后获得的带嵌入信息的图像有近似原图的视觉效果。
4. 3 使用Kh和加密密钥进行数据提取和图像恢复
接收方接收到加密的标记图像 Iew。
1)获取标记图像 Iew最后 4 个像素位信息,计算图像分块大小 s、位平面高阶位个数 α,以及位图中可嵌入块的个数 e0。
2)根据 4. 1 节中的方法,恢复位图 MP,标出图像中 Ca和 Cb及 Cf块,并从所有可嵌入块的低阶位平面中分解出 st流、sq 流和加密的机密数据。
3)根据 4. 1 节中的方法,利用 Kh获取原始的机密数据;由于原 Ca块中像素(第一个像素除外)高阶位是用同一像素对应低阶位替换的,所以用高阶位替换同一像素对应低阶位,并利用 4. 2 节中的方法恢复所有 Ca块的高阶位,可以完全恢复 Ca块。
4)根据 4. 2 节中的方法可以完全恢复 Cb及 Cf块,并使用加密密钥解密图像,可以完全恢复原始图像。
5 实验与结果分析
实验环境为:具有 2. 6 GHz Intel i5-4200U 处理器,4 GB 的个人计算机内存,Windows 7操作系统和 Matlab R2016a。
5. 1 安全性分析
通过香农熵和直方图进行加密图像的安全性分析。
理论上高效的加密方法生成的加密图像,其直方图分布均匀,无法通过直方图的检测技术确定原始图像,从而保证加密图像的安全性。图 3给出了 6个标准图像加密后的直方图,可以看到这些直方图几乎是均匀分布的。
5. 2 单个图像测试
设置块大小为 4,高阶平面数为 3,对标准灰度图像 Peppers进行单体测试,各项测试指标的结果如图 4所示。图 4(a)表示原始图像;图 4(b)表示不带任何数据的加密图像;图 4(c)是嵌入的加密图像,其最大嵌入率计算为 1. 79 bpp;图 4(d)表示直接解密的标记图像,通过加密密钥,可以获得容量为 1. 79 bpp 的解密图像,视觉上与原始图像 I 几乎相同(PSNR= 46. 87 dB);图 4(e)表示恢复的图像,其 PSNR 值为无穷大,完全恢复。
5. 3 不同参数设置对算法的影响
不同的分块大小和高阶位个数会直接影响到可嵌入块的数量及块内像素的高阶位平面冗余,从而影响图像的可嵌入容量和直接解密后的图像视觉质量。
选择不同纹理的 6 个标准灰度图像对算法进行测试。测试中,图像块的大小分别设置为 2×2、4×4、6×6和 8×8,依次将图像块的高阶平面数设置为 1、2、3。实验结果如表 3 所示,使用 MER 和直接解密标记图像的 PSNR 作为评估算法的指标。
表 3 结果表明,随着图像纹理复杂度增强,相同参数条 件下图像的最大嵌入率降低。这是因为随着图像纹理增强,可嵌入块的个数减少,使得嵌入容量降低。
对单个图像来说,给定高阶位平面个数 α,则图像分块 s 越大,最大嵌入率 MER 就越高,直接解密的标记图像 PSNR 值越小。这是因为较大的分块大小 s 可将更多机密信息嵌入到单个可嵌入块中,同时减小了附属参数信息的大小;另一方面,嵌入更多机密信息将改动更多的图像部分,使得解密后标记图像的 PSNR 值减小。但是需要注意的是,当 s 增大超过 4时,块内像素的相关性减弱,具有相同高阶位个数 α 的像素个数减少,从而可嵌入块的数量降低,最大嵌入率 MER降低,解密后标记图像的 PSNR值升高。
对于给定分块大小 s,随着高阶平面个数 α 的增大,大多数测试图像的最大嵌入率 MER 逐渐升高,直接解密图像的 PSNR 值逐渐降低,这是因为随着 α 的增大,一方面是可嵌入块中的可嵌入比特位数增加,另一方面可嵌入块的数量减少。当 α 小于 3 时,大多数测试图像的 MER 都会逐渐增加。当 α 等于 3 时,在大多数测试图像中这两方面的作用达到平衡,这些图像的 MER 达到最大值,而此时 PSNR 并没有太显著降低。
5. 4 不同算法的比较
为了验证本文算法的优越性能,将其和文献[14-16]算法进行比较,所有算法的参数均为最优性能下的指标值。本文算法 α=3,s=4。各个算法的嵌入率和直接解密图像的 PSNR值的关系曲线如图 5所示。
图 5 展示了各个算法在有效负载下标记的解密图像的 PSNR 值的比较曲线。从图 5 中可以看到,本文算法的最大嵌入率大于所有比较方法,而且在较平滑的图像 Airplane、 Lena 上最大嵌入率超过 2. 0 bpp。这主要是因为本文算法利用了更多高阶位平面的冗余从而增大了嵌入量。Chen 等[14]通过重排高位平面比特位的方式也获得了较高的嵌入量。而 Yi等[15]将图像分为 5种类型块的压缩方法,由于附属参数信息占用空间较多,影响了信息的嵌入率,从而性能低于本文算法。Li等[16]利用多轮预测误差扩展来嵌入数据,相较于多平面压缩的方式嵌入量要小得多。另外可以看到,在嵌入率相同的情况下本文算法的 PSNR 值也高于文献[14-16]中算法。这是因为本文算法在最优参数条件下,嵌入量和解密标记图像的 PSNR 取得平衡;另外是在可嵌入块的低阶位平面中嵌入机密数据,其余部分则保持不变,所以在保证嵌入量的同时具有较好的直接解密图像的 PSNR值。
6 结语
针对目前 RDHEI 算法无法更有效地从加密图像中获得更多嵌入空间的问题,本文提出一种基于高阶位平面冗余的可逆信息隐藏方法。在本文方法中,一方面实现了较大的信息嵌入量;另一方面,即使传输过程中图像遭到非法攻击、非法篡改的情况,图像及嵌入信息的安全性仍然能得到保证,即原始图像不能被识别,嵌入信息不会被泄露。这一点有其广泛的应用价值,如在医学、军事领域,首先需要保证的是图像及嵌入信息的安全性,信息即使被破坏也不能被泄露;其次在医学、军事领域需要在图像中嵌入大量的信息。本文方法都可以满足条件,另外在复原信息位没有被篡改的情况下,接收方根据权限密钥仍然可以获得自己需要的信息。未来在信息防篡改及篡改信息恢复方面可进行进一步的研究,以更好地提高图像的安全性。——论文作者:顼 聪1,2* ,王兴田2 ,陶永鹏1
参考文献(References)
[1] CHEN H S,NI J Q,HONG W. High-fidelity reversible data hiding using directionally enclosed prediction[J]. IEEE Signal Processing Letters,2017,24(5):574-578.
[2] HONG W,CHEN T S,CHEN J. Reversible data hiding using Delaunay triangulation and selective embedment[J]. Information Sciences,2015,308:140-154.
[3] FRIDRICH J,GOLJAN M,DU R. Lossless data embedding — new paradigm in digital watermarking[J]. EURASIP Journal on Applied Signal Processing,2002,2002(2):185-196.
[4] CELIK M U, SHARMA G, TEKALP A M, et al. Lossless generalized-LSB data embedding[J]. IEEE Transactions on Image Processing,2005,14(2):253-266.
[5] NI Z C,SHI Y Q,ANSARI N,et al. Reversible data hiding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006,16(3):354-362.
[6] TIAN J. Reversible data embedding using a difference expansion [J]. IEEE Transactions on Circuits and Systems for Video Technology,2003,13(8):890-896.
[7] 李蓉,李向阳 . 图像分区选择的像素值排序可逆数据隐藏[J]. 中国图象图形学报,2017,22(12):1664-1676.(LI R,LI X Y. Pixel value ordering reversible data hiding algorithm based on image block selection[J]. Journal of Image and Graphics,2017,22(12): 1664-1676.)
[8] ZHANG X P. Reversible data hiding in encrypted image[J]. IEEE Signal Processing Letters,2011,18(4):255-258.
[9] 王子驰,张媛,张新鹏. 多比特嵌入的加密图像中可逆信息隐藏方法[J]. 小型微型计算机系统,2014,35(10):2331-2335. (WANG Z C,ZHANG Y,ZHANG X P. A reversible data hiding method in encrypted image with multiple bits embedded[J]. Journal of Chinese Computer Systems,2014,35(10):2331- 2335.)
[10] LI M,XIAO D,KULSOOM A,et al. Improved reversible data hiding for encrypted images using full embedding strategy[J]. Electronic Letters,2015,51(9):690-691.
[11] QIN C,ZHANG W,CAO F,et al. Separable reversible data hiding in encrypted images via adaptive embedding strategy with block selection[J]. Signal Processing,2018,153:109-122.
[12] 李志佳,夏玮. 基于差值直方图平移的密文域可逆信息隐藏算法[J]. 计算机工程,2019,45(11):152-158.(LI Z J,XIA W. Reversible information hiding algorithm in encrypted domain based on difference histogram shifting[J]. Computer Engineering, 2019,45(11):152-158.)
[13] MA K D,ZHANG W M,ZHAO X F,et al. Reversible data hiding in encrypted images by reserving room before encryption [J]. IEEE Transactions on Information Forensics and Security, 2013,8(3):553-562.
SCISSCIAHCI